4.52 sur 5
4.52

Machine Learning A-Z : Bonus IA, Python et R + ChatGPT 2023

Apprenez à créer des algorithmes d'apprentissage automatique en Python et R auprès de deux experts en science des données. Modèles de code inclus.
Maîtriser le Machine Learning sur Python & R
Avoir une grande intuition de nombreux modèles de Machine Learning
Faites des prédictions précises
Faire une analyse puissante
Créer des modèles de Machine Learning robustes
Créez une forte valeur ajoutée à votre entreprise
Utiliser le Machine Learning à des fins personnelles
Gérer des sujets spécifiques comme l'apprentissage par renforcement, la PNL et le Deep Learning
Gérer des techniques avancées comme la réduction de dimensionnalité
Savoir quel modèle de Machine Learning choisir pour chaque type de problème
Construisez une armée de modèles de Machine Learning puissants et sachez comment les combiner pour résoudre n'importe quel problème

Le domaine du Machine Learning vous intéresse ? Alors ce cours est fait pour vous !

Ce cours a été conçu par un IT Architect / Expert Machine Learning afin que nous pouvons partager nos connaissances et vous aider à apprendre des théories, des algorithmes et des bibliothèques de codage complexes de manière simple.

Nous vous guiderons étape par étape dans le monde du Machine Learning. Avec chaque didacticiel, vous développerez de nouvelles compétences et améliorerez votre compréhension de ce sous-domaine difficile mais lucratif de la science des données.

Ce cours peut être complété soit en suivant les tutoriels Python, soit en suivant R. tutoriels, ou les deux – Python & R. Choisissez le langage de programmation dont vous avez besoin pour votre carrière.

Ce cours est amusant et passionnant, et en même temps, nous approfondissons l’apprentissage automatique. Il est structuré de la manière suivante :

    • Partie 1 – Prétraitement des données
    • Partie 2 – Régression : régression linéaire simple, régression linéaire multiple Régression, régression polynomiale, SVR, régression d’arbre de décision, régression de forêt aléatoire
    • Partie 3 – Classification : régression logistique, K-NN, SVM, noyau SVM, Naive Bayes, classification des arbres de décision, classification aléatoire des forêts
    • Partie 4 – Clustering : K-Means, clustering hiérarchique

 

    • Partie 5 – Apprentissage des règles d’association : Apriori, Eclat
    • Partie 6 – Apprentissage par renforcement : Limite de confiance supérieure, échantillonnage de Thompson
    • Partie 7 – Traitement du langage naturel : modèle de sac de mots et algorithmes pour la PNL
    • Partie 8 – Apprentissage profond : Réseaux de neurones artificiels, réseaux de neurones convolutifs
    • Partie 9 – Réduction de la dimensionnalité : PCA, LDA, Kernel PCA
    • Partie 10 – Sélection du modèle et Boosting : validation croisée k-fold, réglage des paramètres, recherche de grille, XGBoost

 

Chaque section à l’intérieur de chaque partie est indépendante. Vous pouvez donc soit suivre l’intégralité du cours du début à la fin, soit accéder directement à n’importe quelle section spécifique et apprendre ce dont vous avez besoin pour votre carrière dès maintenant.

De plus, le cours regorge d’exercices pratiques basés sur des études de cas réelles. Ainsi, non seulement vous apprendrez la théorie, mais vous obtiendrez également de nombreuses pratiques pratiques pour construire vos propres modèles.

Welcome to the course! Here we will help you get started in the best conditions.

1
Welcome Challenge!
2
Machine Learning Demo - Get Excited!

See the power of Machine Learning in action as we create a Logistic Regression predictive model for a real-world marketing and sales use-case!

3
Get all the Datasets, Codes and Slides here
4
How to use the ML A-Z folder & Google Colab
5
Installing R and R Studio (Mac, Linux & Windows)

In this video, Hadelin explains in details how to install R programming language and R studio on your computer so you can swiftly go through the rest of the course.

6
BONUS: Use ChatGPT to Boost your ML Skills

-------------------- Part 1: Data Preprocessing --------------------

1
Welcome to Part 1 - Data Preprocessing
2
The Machine Learning process

Understand the steps involved in Machine Learning: Data Pre-Processing (Import the data, Clean the data, Split into training & test sets, Feature Scaling), Modelling (Build the model, Train the model, Make predictions), and Evaluation (Calculate performance metrics, Make a verdict).

3
Splitting the data into a Training and Test set

Understand why it's important to split the data into a training set and a test set, how they differ and what they are used for.

4
Feature Scaling

Two types of feature scaling: Normalization and Standardization. In the practical tutorials we focus on Standardisation and here we will discuss the intuition behind Normalisation.

Data Preprocessing in Python

1
Getting Started - Step 1
2
Getting Started - Step 2
3
Importing the Libraries
4
Importing the Dataset - Step 1
5
Importing the Dataset - Step 2
6
Importing the Dataset - Step 3
7
For Python learners, summary of Object-oriented programming: classes & objects

A short written summary of what needs to know in Object-oriented programming, e.g. class, object, and method.

8
Coding Exercise 1: Importing and Preprocessing a Dataset for Machine Learning
9
Taking care of Missing Data - Step 1
10
Taking care of Missing Data - Step 2
11
Coding Exercise 2: Handling Missing Data in a Dataset for Machine Learning
12
Encoding Categorical Data - Step 1
13
Encoding Categorical Data - Step 2
14
Encoding Categorical Data - Step 3
15
Coding Exercise 3: Encoding Categorical Data for Machine Learning
16
Splitting the dataset into the Training set and Test set - Step 1
17
Splitting the dataset into the Training set and Test set - Step 2
18
Splitting the dataset into the Training set and Test set - Step 3
19
Coding Exercise 4: Dataset Splitting and Feature Scaling
20
Feature Scaling - Step 1
21
Feature Scaling - Step 2
22
Feature Scaling - Step 3
23
Feature Scaling - Step 4
24
Coding exercise 5: Feature scaling for Machine Learning

Data Preprocessing in R

1
Getting Started
2
Dataset Description
3
Importing the Dataset
4
Taking care of Missing Data
5
Encoding Categorical Data
6
Splitting the dataset into the Training set and Test set - Step 1
7
Splitting the dataset into the Training set and Test set - Step 2
8
Feature Scaling - Step 1
9
Feature Scaling - Step 2
10
Data Preprocessing Template
11
Data Preprocessing Quiz

-------------------- Part 2: Regression --------------------

1
Welcome to Part 2 - Regression

What is regression? 6 types of regression models are taught in this course.

Simple Linear Regression

1
Simple Linear Regression Intuition

The math behind Simple Linear Regression.

2
Ordinary Least Squares

Finding the best fitting line with Ordinary Least Squares method to model the linear relationship between independent variable and dependent variable.

3
Simple Linear Regression in Python - Step 1a
4
Simple Linear Regression in Python - Step 1b
5
Simple Linear Regression in Python - Step 2a
6
Simple Linear Regression in Python - Step 2b
7
Simple Linear Regression in Python - Step 3
8
Simple Linear Regression in Python - Step 4a
9
Simple Linear Regression in Python - Step 4b
10
Simple Linear Regression in Python - Additional Lecture
11
Simple Linear Regression in R - Step 1

Data preprocessing for Simple Linear Regression in R.

12
Simple Linear Regression in R - Step 2

Fitting Simple Linear Regression (SLR) model to the training set using R function ‘lm’.

13
Simple Linear Regression in R - Step 3

Predicting the test set results with the SLR model using R function ‘predict’ .

14
Simple Linear Regression in R - Step 4a

Visualizing the training set results and test set results with R package ‘ggplot2’.

15
Simple Linear Regression in R - Step 4b
16
Simple Linear Regression Quiz

Multiple Linear Regression

1
Dataset + Business Problem Description

An application of Multiple Linear Regression: profit prediction for Startups.

2
Multiple Linear Regression Intuition

The math behind Multiple Linear Regression: modelling the linear relationship between the independent (explanatory) variables and dependent (response) variable.

3
Assumptions of Linear Regression

The 5 assumptions associated with a linear regression model: linearity, homoscedasticity, multivariate normality, independence (no autocorrelation), and lack of multicollinearity - plus an additional check for outliers.

4
Multiple Linear Regression Intuition - Step 3

Coding categorical variables in regression with dummy variables.

5
Multiple Linear Regression Intuition - Step 4

Dummy variable trap and how to avoid it.

6
Understanding the P-Value
7
Multiple Linear Regression Intuition - Step 5

An intuitive guide to 5 Stepwise Regression methods of building multiple linear regression models: All-in, Backward Elimination, Forward Selection, Bidirectional Elimination, and Score Comparison.

8
Multiple Linear Regression in Python - Step 1a
9
Multiple Linear Regression in Python - Step 1b
10
Multiple Linear Regression in Python - Step 2a
11
Multiple Linear Regression in Python - Step 2b
12
Multiple Linear Regression in Python - Step 3a
13
Multiple Linear Regression in Python - Step 3b
14
Multiple Linear Regression in Python - Step 4a
15
Multiple Linear Regression in Python - Step 4b
16
Multiple Linear Regression in Python - Backward Elimination
17
Multiple Linear Regression in Python - EXTRA CONTENT
18
Multiple Linear Regression in R - Step 1a
19
Multiple Linear Regression in R - Step 1b
20
Multiple Linear Regression in R - Step 2a
21
Multiple Linear Regression in R - Step 2b
22
Multiple Linear Regression in R - Step 3
23
Multiple Linear Regression in R - Backward Elimination - HOMEWORK !
24
Multiple Linear Regression in R - Backward Elimination - Homework Solution
25
Multiple Linear Regression in R - Automatic Backward Elimination
26
Multiple Linear Regression Quiz

Polynomial Regression

1
Polynomial Regression Intuition

The math behind Polynomial Regression: modelling the non-linear relationship between independent variables and dependent variable.

2
Polynomial Regression in Python - Step 1a
3
Polynomial Regression in Python - Step 1b
4
Polynomial Regression in Python - Step 2a
5
Polynomial Regression in Python - Step 2b
6
Polynomial Regression in Python - Step 3a
7
Polynomial Regression in Python - Step 3b
8
Polynomial Regression in Python - Step 4a
9
Polynomial Regression in Python - Step 4b
10
Polynomial Regression in R - Step 1a

Data preprocessing for Polynomial Regression in R.

11
Polynomial Regression in R - Step 1b
12
Polynomial Regression in R - Step 2a

Fitting Polynomial Regression model and Linear Regression model to the dataset in R.

13
Polynomial Regression in R - Step 2b
14
Polynomial Regression in R - Step 3a

Visualizing Linear Repression results and Polynomial Regression results and comparing the models' performance.

15
Polynomial Regression in R - Step 3b
16
Polynomial Regression in R - Step 3c
17
Polynomial Regression in R - Step 4a

Predicting new results with Linear Regression model and Polynomial Regression model.

18
Polynomial Regression in R - Step 4b
19
R Regression Template - Step 1

Template for regression modelling in R.

20
R Regression Template - Step 2
21
Polynomial Regression Quiz

Support Vector Regression (SVR)

1
SVR Intuition (Updated!)

Understanding the intuition behind Support Vector Regression (SVR) for the linear case. Concepts like epsilon-insensitive tube and slack variables are explained in this tutorial.

2
Heads-up on non-linear SVR

Some info about upcoming tutorials on Support Vector Machines (SVM), Kernel functions and non-Linear Support Vector Regression (SVR)

3
SVR in Python - Step 1a
4
SVR in Python - Step 1b
5
SVR in Python - Step 2a
6
SVR in Python - Step 2b
7
SVR in Python - Step 2c
8
SVR in Python - Step 3
9
SVR in Python - Step 4
10
SVR in Python - Step 5a
11
SVR in Python - Step 5b
12
SVR in R - Step 1

Salary prediction with Support Vector Regression using R package ‘e1071’: data preprocessing, fitting, predicting, and visualizing the SVR results.

13
SVR in R - Step 2
14
SVR Quiz

Decision Tree Regression

1
Decision Tree Regression Intuition

An intuitive guide to understanding Decision Tree Regression algorithms.

2
Decision Tree Regression in Python - Step 1a
3
Decision Tree Regression in Python - Step 1b
4
Decision Tree Regression in Python - Step 2
5
Decision Tree Regression in Python - Step 3
6
Decision Tree Regression in Python - Step 4
7
Decision Tree Regression in R - Step 1

Salary prediction with Decision Tree Regression model using R package ‘rpart’: data preprocessing, fitting, predicting, and visualizing the results.

8
Decision Tree Regression in R - Step 2
9
Decision Tree Regression in R - Step 3
10
Decision Tree Regression in R - Step 4
11
Decision Tree Regression Quiz

Random Forest Regression

1
Random Forest Regression Intuition

An intuitive introduction of Random Forest Regression: an ensemble learning algorithms.

2
Random Forest Regression in Python - Step 1
3
Random Forest Regression in Python - Step 2
4
Random Forest Regression in R - Step 1

Salary prediction with Random Forest Regression model using R package ‘randomForest’, and visualizing the results with ‘ggplot2’.

5
Random Forest Regression in R - Step 2
6
Random Forest Regression in R - Step 3
7
Random Forest Regression Quiz

Evaluating Regression Models Performance

1
R-Squared Intuition

The math behind R-squared.

2
Adjusted R-Squared Intuition

Using R-squared as a goodness of fit measure and the math behind adjusted R-squared.

3
Evaluating Regression Models Performance Quiz

Regression Model Selection in Python

1
Make sure you have this Model Selection folder ready
2
Preparation of the Regression Code Templates - Step 1
3
Preparation of the Regression Code Templates - Step 2
4
Preparation of the Regression Code Templates - Step 3
5
Preparation of the Regression Code Templates - Step 4
6
THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 1
7
THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! - STEP 2
8
Conclusion of Part 2 - Regression

Regression Model Selection in R

1
Evaluating Regression Models Performance - Homework's Final Part

Improving Backward Elimination with adjusted R-squared for model performance evaluation.

2
Interpreting Linear Regression Coefficients

Interpretation of the Linear Regression analysis results: coefficients for linear relationships.

3
Conclusion of Part 2 - Regression

The pros & cons of each regression model; How to choose regression models? How to improve regression models. Introduction of regularization for the problem of over fitting.

-------------------- Part 3: Classification --------------------

1
Welcome to Part 3 - Classification

Welcome to Part 3 of the course, where you will learn how to implement several classical Machine Learning Classification Models.

Logistic Regression

1
What is Classification?

Examples of Classification use-cases: Churn Modelling in Business, Email Spam detection, Image classification

2
Logistic Regression Intuition

The intuition and math behind logistic regression: e.g. when exploring the correlation between people' age and whether or not they would take a certain action, we could instead predict the probability or likelihood of taking that action. The scientific approach to do so is to apply sigmoid function to linear regression equation.

3
Maximum Likelihood

How to calculate the "Likelihood" of a Logistic Regression and how to use the Maximum Likelihood method to pick the best-fitting logistic regression curve for your data.

4
Logistic Regression in Python - Step 1a
5
Logistic Regression in Python - Step 1b
6
Logistic Regression in Python - Step 2a
7
Logistic Regression in Python - Step 2b
8
Logistic Regression in Python - Step 3a
9
Logistic Regression in Python - Step 3b
10
Logistic Regression in Python - Step 4a
11
Logistic Regression in Python - Step 4b
12
Logistic Regression in Python - Step 5
13
Logistic Regression in Python - Step 6a
14
Logistic Regression in Python - Step 6b
15
Logistic Regression in Python - Step 7a
16
Logistic Regression in Python - Step 7b
17
Logistic Regression in Python - Step 7c
18
Logistic Regression in Python - Step 7 (Colour-blind friendly image)
19
Logistic Regression in R - Step 1

Preprocess the data using the data preprocessing template made in Part1.

20
Logistic Regression in R - Step 2

Fit logistic regression to a training set via 'glm'function. Glm is for Generalized Linear Models and is used here to linearly separate two classes of users.

21
Logistic Regression in R - Step 3

Predict the test results in two steps: First, obtain the predicted probabilities via 'predict' function, and then converted the results to zeros and ones.

22
Logistic Regression in R - Step 4

Evaluate the performance of logistic regression model by making a confusion matrix which counts the number of correct and incorrect predictions, which is realized in one line of code via 'table' function.

23
Warning - Update
24
Logistic Regression in R - Step 5a

Visualize the predictive power of the logistic model on a graph made via 'ElemStatLearn' package. A step by step analysis of the graph.

25
Logistic Regression in R - Step 5b
26
Logistic Regression in R - Step 5c
27
Logistic Regression in R - Step 5 (Colour-blind friendly image)
28
R Classification Template

Make a template from the logistic regression model in order to build future classification models more efficiently.

29
Machine Learning Regression and Classification BONUS
30
Logistic Regression Quiz
31
EXTRA CONTENT: Logistic Regression Practical Case Study

K-Nearest Neighbors (K-NN)

1
K-Nearest Neighbor Intuition

Simple and straightforward illustration of K-Nearest Neighbor algorithm: how to classify a new data point to a category of data - a step by step rule guide to KNN algorithm.

2
K-NN in Python - Step 1
3
K-NN in Python - Step 2
4
K-NN in Python - Step 3
5
K-NN in R - Step 1

Implement the K-Nearest Neighbor algorithm to the social network dataset in R using the classification template. The knn function from a class library is used to fit KNN model to the dataset. The prediction boundary on the graph can separate data even when the data is not linearly separable.

6
K-NN in R - Step 2
7
K-NN in R - Step 3
8
K-Nearest Neighbor Quiz

Support Vector Machine (SVM)

1
SVM Intuition

The intuition behind Support Vector Machine algorithm: SVM searches for lines through maximum margin to separate two or more classes of data points. The points deciding the lines are support vectors that supporting the decision boundary and this whole SVM algorithm.

2
SVM in Python - Step 1
3
SVM in Python - Step 2
4
SVM in Python - Step 3
5
SVM in R - Step 1

Implement the SVM algorithm to the social network dataset in R using the classification template. The SVM function from the e1071 package is used as a classifier to fit the dataset. As a linear kernal is chosen for this case, a straight line is obtained to separate the data.

6
SVM in R - Step 2
7
SVM Quiz

Kernel SVM

1
Kernel SVM Intuition

In the previous section, the SVM algorithm tells us exactly how to find a decision boundary or a straight line to separate data points. However, when the data points are not linearly separable, we need to come up with an algorithm to deal with this situation.

2
Mapping to a higher dimension

How do we take our nonlinearly separable dataset, map it to a higher dimension and get a linearly separable dataset, and then build a decision boundary or hyperplane for the dataset with the SVM algorithm, and project all of this back to our original dimension.

3
The Kernel Trick

Mapping the dataset to a higher dimensional space can be very highly compute-intensive, therefore, we explore a different approach with the kernel trick. By applying the Gaussian or the radial basis function (RBF) kernel functions, we can create nonlinear and complex decision boundary while everything is still happening in the same dimensions.

4
Types of Kernel Functions

Other popular choices of kernel functions except for the Gaussian function or the RBF function, such as the sigmoid kernel and polynomial kernel. Visual representations of these different types of kernels in three dimensions.

5
Non-Linear Kernel SVR (Advanced)

Understand how the non-linear Support Vector Regression (SVR) model works using the RBF (Radial Basis Function) Kernel.

6
Kernel SVM in Python - Step 1
7
Kernel SVM in Python - Step 2
8
Kernel SVM in R - Step 1

Implement the Kernel SVM algorithm to the social network dataset in R using the classification template. The svm function from e1071 package is used as a classifier to fit the dataset. We used the 'radial' kernel (like a Gaussian kernel) to create nonlinear classifier at a higher level, so we have a curved boundary separating the two categories.

9
Kernel SVM in R - Step 2
10
Kernel SVM in R - Step 3
11
Kernel SVM Quiz

Naive Bayes

1
Bayes Theorem

The mathematical representation of Bayes Theorem and discussion of each one of its terms. Illustration of Bayes Theorem on an intuitive level through an example.

2
Naive Bayes Intuition

Understand the naïve Bayes classifier on an intuitive level, and learn that the naïve Bayes classifier is a probabilistic type of classifier because we first calculate the probabilities and based on probabilities we decide which class to put a new data point in.

3
Naive Bayes Intuition (Challenge Reveal)

Show the solution of the challenge that the instructor assigned the last lecture - step 2 of the naïve Bayes algorithm calculating the posterior probability.

4
Naive Bayes Intuition (Extras)

Cover three additional comments about the naïve Bayes classifier: Why this algorithm is called naïve? How can we potentially drop the marginal probability in the naïve Bayes algorithm? What happens when there are more than two features involved in the dataset?

5
Naive Bayes in Python - Step 1
6
Naive Bayes in Python - Step 2
7
Naive Bayes in Python - Step 3
8
Naive Bayes in R - Step 1

Implement the naive Bayes algorithm to the social network dataset in R using the classification template. The naiveBayes function from e1071 package is used as a classifier to fit the dataset. The graphic result shows that the naive Bayes algorithm manages to classify the nonlinear separable data points with a smooth boundary.

9
Naive Bayes in R - Step 2
10
Naive Bayes in R - Step 3
11
Naive Bayes Quiz

Decision Tree Classification

1
Decision Tree Classification Intuition

Decision Tree classification helps classify the data and give categorical variables as an outcome, which is different from Regression Tree that predicts real numbers. Basically, the Decision Tree Classification works by splitting the dataset into several iterations, and the splitting is done in such a way to maximize the number of a certain category in each of these splits.

2
Decision Tree Classification in Python - Step 1
3
Decision Tree Classification in Python - Step 2
4
Decision Tree Classification in R - Step 1

Implement the Decision Tree Classification algorithm to the social network dataset in R using the classification template. The 'rpart' function is used as a classifier to fit the data set. The graphic result shows that the prediction boundary is composed of only horizontal and vertical lines, and the overfitting is less than in Python. The Decision Tree is also plotted for better interpretation of the results.

5
Decision Tree Classification in R - Step 2
6
Decision Tree Classification in R - Step 3
7
Decision Tree Classification Quiz

Random Forest Classification

1
Random Forest Classification Intuition

The Random Forest algorithm is an ensemble learning method that combines a great number of Decision Trees. A step by step introduction of how Random Forest algorithm works. Particularly, Microsoft has used the Random Forest algorithm to understand the motions of body parts when developing Kinect.

2
Random Forest Classification in Python - Step 1
3
Random Forest Classification in Python - Step 2
4
Random Forest Classification in R - Step 1

Implement the Random Forest Classification algorithm to the social network dataset in R using the classification template. The randomForest function is used as a classifier to fit the dataset. A conclusion of all these classifiers we have built for this particular business problem.

5
Random Forest Classification in R - Step 2
6
Random Forest Classification in R - Step 3
7
Random Forest Classification Quiz

Classification Model Selection in Python

1
Make sure you have this Model Selection folder ready
2
Confusion Matrix & Accuracy Ratios
3
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 1
4
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 2
5
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 3
6
ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION - STEP 4

Evaluating Classification Models Performance

1
False Positives & False Negatives

Introduce the concepts of False Positives and False Negatives.

2
Accuracy Paradox

What is Accuracy Paradox and why shouldn't base your judgment only on accuracy when assessing your model.

3
CAP Curve

What is Cumulative Accuracy Profile (CAP) and how to assess models based on their CAP curves. The distinction between CAP and Receiver Operating Characteristics (ROC).

4
CAP Curve Analysis

The analysis of CAP - what intuitive insight can we derive from the CAP curve and how to quantify this effect.

5
Conclusion of Part 3 - Classification

A conclusion of the 7 classification models you have learned in this Part 3.

6
Evaluating Classiification Model Performance Quiz

-------------------- Part 4: Clustering --------------------

1
Welcome to Part 4 - Clustering

Welcome message: How clustering differs from classification; Lecture topics include K-Means Clustering and Hierarchical Clustering.

K-Means Clustering

1
What is Clustering? (Supervised vs Unsupervised Learning)

Understand the difference between Supervised Learning and Unsupervised Learning.

2
K-Means Clustering Intuition

Understand how K-Means Clustering works behind the scene.

3
The Elbow Method

Choose the optimal number of clusters K with the Elbow method in K-Means.

4
K-Means++
5
K-Means Clustering in Python - Step 1a
6
K-Means Clustering in Python - Step 1b
7
K-Means Clustering in Python - Step 2a
8
K-Means Clustering in Python - Step 2b
9
K-Means Clustering in Python - Step 3a
10
K-Means Clustering in Python - Step 3b
11
K-Means Clustering in Python - Step 3c
12
K-Means Clustering in Python - Step 4
13
K-Means Clustering in Python - Step 5a
14
K-Means Clustering in Python - Step 5b
15
K-Means Clustering in Python - Step 5c
16
K-Means Clustering in R - Step 1

Implement the K-Means algorithm with R function ‘kmeans’ to group clients, and visualize the clusters with function ‘clusplot’.

17
K-Means Clustering in R - Step 2
18
K-Means Clustering Quiz

Hierarchical Clustering

1
Hierarchical Clustering Intuition

Learn the Hierarchical Agglomerative clustering algorithm step by step.

2
Hierarchical Clustering How Dendrograms Work

How is a Dendrogram constructed and how does the Dendrogram work.

3
Hierarchical Clustering Using Dendrograms

Implement Hierarchical Clustering using Dendrograms based on the largest Euclidean distance.

4
Hierarchical Clustering in Python - Step 1
5
Hierarchical Clustering in Python - Step 2a
6
Hierarchical Clustering in Python - Step 2b
7
Hierarchical Clustering in Python - Step 2c
8
Hierarchical Clustering in Python - Step 3a
9
Hierarchical Clustering in Python - Step 3b
10
Hierarchical Clustering in R - Step 1

Import and prepare dataset for Hierarchical Clustering in R.

11
Hierarchical Clustering in R - Step 2

Find the optimal number of HC clusters using Dendrogram with R function ‘hclust’, and visualize the results.

12
Hierarchical Clustering in R - Step 3

Group clients using Hierarchical Clustering algorithm with R function ‘hclust’.

13
Hierarchical Clustering in R - Step 4

Visualize the Hierarchical Clustering results with R function ‘clusplot’.

14
Hierarchical Clustering in R - Step 5

Analyze and explain Hierarchical Clustering results in R.

15
Hierarchical Clustering Quiz
16
Conclusion of Part 4 - Clustering

The conclusion to the Hierarchical Clustering

-------------------- Part 5: Association Rule Learning --------------------

1
Welcome to Part 5 - Association Rule Learning

A welcome message for Association Rule Learning lectures. Lecture topics include Apriori and Eclat.

Apriori

1
Apriori Intuition

What is Apriori? Learn the math behind Apriori. Introduce the Apriori algorithm step by step.

2
Apriori in Python - Step 1
3
Apriori in Python - Step 2
4
Apriori in Python - Step 3
5
Apriori in Python - Step 4
6
Apriori in R - Step 1

Implement a recommendation system with Apriori to optimize sales. Prepare dataset in R and describe the problem.

7
Apriori in R - Step 2

Train Apriori model with R function ‘Apriori’. Set the minimum support and minimum confidence.

8
Apriori in R - Step 3

Explain the association rules in the output of Apriori. Visualize the rules and sort them by their decreasing lift (the relevance of a rule) with R function ‘inspect’.

9
Apriori Quiz

Eclat

1
Eclat Intuition

The intuition behind the Eclat algorithm: the algorithm and an example of a movie recommendation system using Eclat.

2
Eclat in Python
3
Eclat in R

Optimize the sales in a grocery store using Eclat algorithm with R function ‘eclat’ and visualize the results with R function ‘inspect’.

4
Eclat Quiz

-------------------- Part 6: Reinforcement Learning --------------------

1
Welcome to Part 6 - Reinforcement Learning

Welcome to Part 6 - Reinforcement Learning, where you will understand and learn how to implement Upper Confidence Bound (UCB) and Thompson Sampling models.

Upper Confidence Bound (UCB)

1
The Multi-Armed Bandit Problem

What is Reinforcement Learning and what is Multi-Armed Bandit Problem. History and modern application of Multi-Armed Bandit Problem. How are the two factors - exploration and exploitation in play to get to the optimal result in the process.

2
Upper Confidence Bound (UCB) Intuition

Intuitive concept behind the Upper Confidence Bound (UCB) algorithm and how it solves the Multi-Armed Bandit Problem.

3
Upper Confidence Bound in Python - Step 1
4
Upper Confidence Bound in Python - Step 2
5
Upper Confidence Bound in Python - Step 3
6
Upper Confidence Bound in Python - Step 4
7
Upper Confidence Bound in Python - Step 5
8
Upper Confidence Bound in Python - Step 6
9
Upper Confidence Bound in Python - Step 7
10
Upper Confidence Bound in R - Step 1

Import and explore the 'Ads Clickthrough rate (CTR) Optimisation' dataset in R. Implement the Random Selection algorithm that consists of selecting at random one version of the ad at each time.

11
Upper Confidence Bound in R - Step 2

Implement the Upper Confidence Bound (UCB) algorithm in R from scratch.

12
Upper Confidence Bound in R - Step 3

Continue implementing the UCB algorithm in R. The result obtained with UCB algorithm almost doubles the result with the random selection algorithm, also the best ad is selected.

13
Upper Confidence Bound in R - Step 4

Visualize the result in R by making histogram to see the number of times each ad is selected.

14
Upper Confidence Bound Quiz

Thompson Sampling

1
Thompson Sampling Intuition

The intuition behind Thompson Sampling algorithm and how it solves the Multi-Armed Bandit Problem.

2
Algorithm Comparison: UCB vs Thompson Sampling

A brief comparison of UCB and Thompson Sampling algorithm - pros and cons of each of the algorithms.

3
Thompson Sampling in Python - Step 1
4
Thompson Sampling in Python - Step 2
5
Thompson Sampling in Python - Step 3
6
Thompson Sampling in Python - Step 4
7
Additional Resource for this Section
8
Thompson Sampling in R - Step 1

Implement the Thompson Sampling algorithm in R from scratch.

9
Thompson Sampling in R - Step 2

Visualize the result in R, and to see the performance of Thompson Sampling algorithm beating UCB algorithm for this problem.

10
Thompson Sampling Quiz

-------------------- Part 7: Natural Language Processing --------------------

1
Welcome to Part 7 - Natural Language Processing

Welcome to Part 7 - Natural Language Processing, where you will understand and learn NLP and a well-known model of it - the Bag of Words model.

2
NLP Intuition
3
Types of Natural Language Processing
4
Classical vs Deep Learning Models
5
Bag-Of-Words Model
6
Natural Language Processing in Python - Step 1
7
Natural Language Processing in Python - Step 2
8
Natural Language Processing in Python - Step 3
9
Natural Language Processing in Python - Step 4
10
Natural Language Processing in Python - Step 5
11
Natural Language Processing in Python - Step 6
12
Natural Language Processing in Python - BONUS
13
Homework Challenge

A little challenge for those up for some practical activities, e.g. try other classification models and evaluate their performances for this particular problem.

14
Natural Language Processing in R - Step 1

How to prepare text dataset. Introduce and import the dataset of 1000 written reviews of restaurants in R.

15
Warning - Update
16
Natural Language Processing in R - Step 2

Clean the text - step 1, create a corpus containing the text of the reviews with 'tm' library in R.

17
Natural Language Processing in R - Step 3

Clean the text - step 2, put all the letters of the reviews in lowercase with 'tm_map' function in R.

18
Natural Language Processing in R - Step 4

Clean the text - step 3, to simplify the corpus, remove all the numbers in the reviews with 'tm_map' function in R.

19
Natural Language Processing in R - Step 5

Clean the text - step 4, to simplify the corpus, remove all the punctuations in the reviews with 'tm_map' function in R.

20
Natural Language Processing in R - Step 6

Clean the text - step 5, to simplify the corpus, remove all the non-relevant words in the reviews with 'tm_map' function in R.

21
Natural Language Processing in R - Step 7

Clean the text - step 6, to simplify the corpus, apply stemming to the reviews with 'tm_map' function in R.

22
Natural Language Processing in R - Step 8

Clean the text - step 7, to simplify the corpus, remove all the extra spaces in the review with 'tm_map' function in R.

23
Natural Language Processing in R - Step 9

Create the sparse matrix of features for the Bag of Words models with 'DocumentTermMatrix' function in R, and reduce the sparsity.

24
Natural Language Processing in R - Step 10

Train the classification model using the Random Forest classification algorithm prepared in Section 16.

25
Homework Challenge

A little challenge for those up for some practical activities, e.g. try other classification models and evaluate their performances for this particular problem.

26
Natural Language Processing Quiz

-------------------- Part 8: Deep Learning --------------------

1
Welcome to Part 8 - Deep Learning

Welcome message. Brief introduction of Deep Learning algorithms and their applications.

2
What is Deep Learning?

How IT technology evolves, what Deep Learning is, and why it’s called Deep Learning.

3
Deep Learning Quiz

Artificial Neural Networks

1
Plan of attack

How we’re going to learn Artificial Neural Networks. The list of topics included in the following ANN lectures.

2
The Neuron

How neurons in human brain work. How do we replicate that with Artificial Neural Network (ANN)?

3
The Activation Function

The math behind 4 types of activation function: Threshold Function, Sigmoid, Rectifier, and Hyperbolic Tangent (tanh). How to choose an activation function?

4
How do Neural Networks work?

How to use Artificial Neural Network for property price prediction.

5
How do Neural Networks learn?

Learning process of a back propagation neural network: how does a neural network pass signals, how is the prediction error back propagated through the neural network.

6
Gradient Descent

How does a neural network adjust its weights to minimize the cost function? How to find the optimal weights with Gradient Descent?

7
Stochastic Gradient Descent

Use Stochastic Gradient Descent to optimize weights when the cost function isn’t convex (more than one global minimum). Compare Batch Gradient Descent and Stochastic Gradient Descent.

8
Backpropagation

Summary of the learning process of a back propagation neural network. Steps to train an ANN model with Stochastic Gradient Descent.

9
Business Problem Description

Churn prediction of bank customers using Artificial Neural Network.

10
ANN in Python - Step 1
11
ANN in Python - Step 2
12
ANN in Python - Step 3
13
ANN in Python - Step 4
14
ANN in Python - Step 5
15
ANN in R - Step 1

Dataset preparation for bank customer churns prediction using ANN model in R.

16
ANN in R - Step 2

Install and initialize R package ‘h2o’ for customer churns prediction using ANN model.

17
ANN in R - Step 3

Build the ANN model for customer churns prediction on the training set with h2o.deeplearning()

18
ANN in R - Step 4 (Last step)

Make a prediction on the test set with the trained ANN model using h2o.predict(). Evaluate the model’s performance with the confusion matrix.

19
Deep Learning Additional Content
20
EXTRA CONTENT: ANN Case Study
21
ANN QUIZ

Convolutional Neural Networks

1
Plan of attack

What and how we will learn in Convolutional Neural Networks section.

2
What are convolutional neural networks?

The biological inspiration of Convolutional Neural Networks. How can CNN work?

3
Step 1 - Convolution Operation

The three elements of Convolution Operation: input image, feature detector, and feature map. How Convolution Operation works?

4
Step 1(b) - ReLU Layer

Increase the non-linearity in images with ReLU Layer: a supplementary step to the Convolution Operation. What Rectifier is.

5
Step 2 - Pooling

What is Pooling? The purpose and types of Pooling. How Max Pooling works. The number game using CNN created by Adam Harley.

6
Step 3 - Flattening

How do we flatten the pooled feature map into a column to get the input vector for the ANN.

7
Step 4 - Full Connection

What is the aim of full connection and the full connection process? How to add a whole artificial neural network to a CNN? How to classify dog and cat images with CNN?

8
Summary

A summary of CNN and its building process

9
Softmax & Cross-Entropy

What is Softmax function? Why do we use Cross-Entropy loss to measure the error at a softmax layer?

10
CNN in Python - Step 1
11
CNN in Python - Step 2
12
CNN in Python - Step 3
13
CNN in Python - Step 4
14
CNN in Python - Step 5
15
CNN in Python - FINAL DEMO!
16
Deep Learning Additional Content #2
17
CNN Quiz

-------------------- Part 9: Dimensionality Reduction --------------------

1
Welcome to Part 9 - Dimensionality Reduction

Welcome message. The dimensionality reduction techniques will be covered in this course.

Principal Component Analysis (PCA)

1
Principal Component Analysis (PCA) Intuition

What is PCA used for? PCA procedure and examples.

2
PCA in Python - Step 1
3
PCA in Python - Step 2
4
PCA in R - Step 1

PCA in a few words. Dimension reduction techniques summary. Dataset preparation for applying PCA in R.

5
PCA in R - Step 2

Install R packages ‘caret’ and ‘e1071’ for PCA. Apply PCA to extract features and get feature datasets in R.

6
PCA in R - Step 3

Fit SVM to the training feature dataset and predict the test set. Evaluate the model with a confusion matrix. Visualize the results.

7
PCA Quiz

Linear Discriminant Analysis (LDA)

1
Linear Discriminant Analysis (LDA) Intuition

What is LDA used for? How LDA differ from PCA? The 5 main steps for LDA algorithm.

2
LDA in Python
3
LDA in R

Wine business customer segmentation using LDA and SVM with R package ‘MASS’ and ‘e1071’. Visualize and explain the results.

4
LDA Quiz

Kernel PCA

1
Kernel PCA in Python
2
Kernel PCA in R

Implement Kernel PCA with R package ‘kernlab’ and Logistic Regression for purchase prediction application. Visualize and explain the results with R package ‘ElemStatLearn’.

-------------------- Part 10: Model Selection & Boosting --------------------

1
Welcome to Part 10 - Model Selection & Boosting

Welcome to Part 10 - understand and learn the techniques to evaluate the model and to improve the model performance.

Model Selection

1
k-Fold Cross Validation in Python
2
Grid Search in Python
3
k-Fold Cross Validation in R

Implement k-Fold Cross-Validation in R with 'caret' library, which optimizes the way to evaluate the model by fixing the variance problem for the training.

4
Grid Search in R

Implement Grid Search with 'caret' library in R to find the optimal values of the hyperparameters for a machine learning model.

XGBoost

1
XGBoost in Python
2
Model Selection and Boosting Additional Content
3
XGBoost in R

Introduce the XGBoost - a powerful implementation of gradient boosting in terms of model performance and execution speed. A simple implementation of XGBoost in R with 'xgboost' library.

Exclusive Offer

1
***OUR SPECIAL OFFER***

Annex: Logistic Regression (Long Explanation)

1
Logistic Regression Intuition

The intuition behind logistic regression: e.g. when exploring the correlation between people' age and whether or not they would take a certain action, we could instead predict the probability or likelihood of taking that action. The scientific approach to do so is to apply sigmoid function to linear regression equation.

Vous pouvez visualiser et ru00e9viser le matu00e9riel de cours indu00e9finiment, comme une chau00eene u00e0 la demande.
Absolumentu00a0! Si vous disposez d'une connexion Internet, les cours sur WeCours sont disponibles u00e0 tout moment sur n'importe quel appareil. Si vous n'avez pas de connexion Internet, certains instructeurs permettent u00e9galement u00e0 leurs u00e9tudiants de tu00e9lu00e9charger les cours. instructeur cependant, alors assurez-vous d'u00eatre de leur bon cu00f4tu00e9u00a0!
4.5
4.5 sur 5
Notes174116

Détails des Notes

Étoiles 5
95057
Étoiles 4
58998
Étoiles 3
15692
Étoiles 2
2708
Étoiles 1
1661
Garantie de remboursement de 30 jours

Inclut

42 heures de vidéo à la demande
Accès complet à vie
Accès sur le mobile et la télévision
Certificat d'achèvement

Archive

Working hours

Monday 9:30 am - 6.00 pm
Tuesday 9:30 am - 6.00 pm
Wednesday 9:30 am - 6.00 pm
Thursday 9:30 am - 6.00 pm
Friday 9:30 am - 5.00 pm
Saturday Closed
Sunday Closed